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Abstract          Most rule learning systems posit hard decision boundaries for continuous 

attributes and point estimates of rule accuracy, with no measures of variance, which may 

seem arbitrary to a domain expert. These hard boundaries/points change with small 

perturbations to the training data due to algorithm instability. Moreover, rule induction 

typically produces a large number of rules that must be filtered and interpreted by an 

analyst. This paper describes a method of combining rules over multiple bootstrap 

replications of rule induction so as to reduce the total number of rules presented to an 

analyst, to measure and increase the stability of the rule induction process, and to provide 

a measure of variance to continuous attribute decision boundaries and accuracy point 

estimates. A measure of similarity between rules is also introduced as a basis of 

multidimensional scaling to visualize rule similarity.   The method was applied to 

perioperative data and to the UCI (University of California, Irvine) thyroid dataset. 
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1. Introduction 

Rule induction (Michalski & Chilausky, 1980; Clark & Niblett, 1989; Cohen, 

1995; Mitchell, 1997, pp. 274-306; van den Eijkel, 1999; Klösgen, 2002) identifies 

conditions that are associated with particular outcomes. For example in the domain of 

perioperative medicine  (i.e., the process of preoperative evaluation, providing 

anesthesia, and managing postoperative recovery), 34,926 “outcomes” (generally adverse 

events) have been identified (Forrest, Rehder, Cahalan, & Goldsmith, 1990; 1992) and 

are used to evaluate post-surgical status of patients in cases that involve general 

anesthesia. Rule induction from data in this setting yields rules like the following: 

IF Height <  158 AND Age <  49 AND ASAClass >= 3 THEN NauseaVomit = Significant 

IF Hypertension = yes AND Phase1Recovery >= 84 AND Age <  49 

         THEN Pain = Severe 

IF Age >= 61 AND BloodLoss >= 100 AND BloodPressureVariability >= 16.7371   

         THEN ExtendedPhase1Recovery = yes 

         The incidence of serious injury is very low and even cases with intraoperative 

incidents resolve with minimal postoperative complication.  But these minimal incidents 

may result in added cost, delay, patient discomfort, or extended recovery time.  Since 

there may be multiple outcomes/incidents per patient and most of the patients are 

“uneventful” with respect to any or even all adverse outcomes, perioperative KDD 

(knowledge discovery in databases) seeks to identify subpopulations at risk for the 

various adverse outcomes so that preoperative safeguards can be taken.   

          Rule induction fits this objective because induced rules focus on positive examples 

which “represent some surprising occurrence or anomaly we wish to monitor” (Riddle, 

Segal, & Etzioni, 1994).  This is in contrast to the classification of positive and negative 

examples by classifiers (e.g., decision lists or decision trees), which classify all data, 
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typically with respect to mutually-exclusive outcomes.  If the majority of the examples 

are negative, a classifier may be constructed  to optimize overall classification at the 

expense of creating branches that isolate the abnormalities (Kubat, Holte, & Matwin, 

1998).   

            Though rule induction represents a good starting point for analyzing perioperative 

data and like domains, current systems have drawbacks, which include: 

a) No measure of variance around a rule’s accuracy and no variance around 

continuous attribute decision boundaries (e.g., Height < 158), which can diminish 

a domain expert’s trust in discovered knowledge. If a boundary for a rule 

involving weight is 67 kilograms, for example, it is valuable to know that the 

standard deviation is 3 kilograms instead of 10. It is also useful to know that one 

rule might have lower accuracy but a smaller standard deviation than another rule. 

b) Various forms of rule instability, so that different rules are learned with small 

changes to a training data set (including changes to attribute decision boundaries 

as in (a)), which can again diminish trust in discovered rules. One of our goals is 

to introduce this notion of instability with respect to rule induction (as opposed to 

classifier learning), and to characterize it with respect to a selected rule induction 

system. 

c) The discovery of a large number of rules, some of which can be quite similar and 

in any case may be difficult for a domain expert to filter. 

This paper describes a method of combining rules over multiple bootstrap replications of 

rule induction so as to mitigate these problems. A measure of similarity between rules is 

also introduced as a basis of multidimensional scaling to visualize rule similarity.    
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         Section 2 briefly describes the Brute system, which we use as the basic rule 

induction system. Section 3 describes the bootstrapping procedure as applied to rule 

induction, and processes of comparing, combining, and visualizing rules. Section 4 

presents experimental results with the bootstrapped-Brute system, indicating substantial 

reduction in the number of discovered rules and providing variability information that is 

helpful in rule interpretation. Section 5 discusses other issues of algorithm stability and 

computational cost. 

                      2. The Brute System for Rule Induction 

Brute version 1.2 (Riddle, et al, 1994; Segal, 1997) was chosen to discover rules 

over which summary rules would eventually be induced across multiple bootstrap 

replications.  For Brute, a rule antecedent is a conjunction of conditions defined over 

discrete and/or continuous attributes. A rule consequent is a discrete outcome.  Sample 

rules include: 

       IF A=X and B=Y THEN C=Z 

       IF A<X AND A>=Y AND B=W THEN C=Z 

       IF A<>X AND B=Y THEN C=Z 

The depth of the rule is the number of attribute conjuncts in its antecedent.  The first 

example above has a depth of 2, the second a depth of 3 and the third a depth of 2.  For 

discrete attributes, such as Sex=Female or AnesthesticAgent <> Isoflurane, the relational 

operator is either = or <>.  For continuous attributes, the operator is either < or >=.   
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         Theoretically, Brute can exhaustively search the space of conjunctive rules with a 

single specified outcome
1
, but has a variety of options to limit the search in practice.  

Options include limiting the depth of search (i.e., the number of conjuncts that can occur 

in a rule’s antecedent) and rejecting rules that cover less than a certain percentage of 

positive examples.  Brute also includes other filters to eliminate rules from consideration: 

(a) eliminate rules with antecedents that are very similar to another, better scoring 

rule or redundant rule elimination,  

(b) eliminate rules with parents that are very similar to the parent
2
 of another, better 

scoring rule or alternate specialization elimination,  

(c) eliminate rules with antecedents that are subsumed by another good rule or 

uninformative  specialization elimination, and  

(d) eliminate rules that are not deemed statistically independent of another better 

scoring rule or non-homogenous rule elimination.  

All filters are applied to choose between rules with the same outcome. 

        Of the rules discovered in the constrained search, Brute returns the best N rules 

according to an objective function, to be described shortly.  Brute is executed by 

specifying options on how to perform the search, the data file to search, and the outcome 

to be predicted.  An example would be: 

brute -d2 -c10 -r5 mushroom POISONOUS 

                                                 
1
 If the data includes more than a single outcome then Brute can be run separately for each possible 

outcome. Each run would discover rules for the specified outcome, implicitly treating other outcomes as a 

separate class. 
2
 A parent rule has an antecedent that is a subset of one less conjunct than any of its childrens’ antecedents. 

For example, “Color=Blue” and “Shape=Round” are parents of “Color=Blue and Shape=Round”. 
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In this example, a data file from the University of California at Irvine data repository 

(Bay, 1999) describing mushrooms has a binary class attribute of either POISONOUS or 

NONPOISONOUS and other attributes such as ODOR and GILL-COLOR.  A search is 

conducted through the space of rules for the 5 best rules with depth less than or equal to 2 

and that cover at least 10% of the positive training examples.  After finding these rules in 

the training set, the performance of the rules is evaluated on a test set.  Brute lists the 

rules found, their accuracy, coverage, and the result of a chi square test for statistical 

significance.  These results are provided for the training set and a test set.  The output for 

the example is shown in Table 1.   

                                                         Table 1.  Brute Results 

              Data               Test 

                Acc  Cov   Chi     Acc  Cov   Chi 

                  ----------------------------------- 

IF ODOR = FISHY THEN CLASS = POISONOUS          100.0 14.3 450.8   100.0 15.5 207.1 

IF ODOR = FOUL THEN CLASS = POISONOUS           100.0 55.3 1741.1  100.0 54.4 727.0 

IF ODOR = SPICY THEN CLASS = POISONOUS          100.0 14.4 454.3   100.0 15.2 203.7 

IF GILL-COLOR = BUFF                    

   THEN CLASS = POISONOUS                       100.0 43.8 1380.0  100.0 44.4 594.2 

IF STALK-COLOR-ABOVE-RING = BUFF        

   THEN CLASS = POISONOUS                      100.0 10.5 332.3   100.0 12.0 160.9 

 

        For this example, the five rules were 100 percent accurate with very high statistical 

significance.  Coverage refers to the percentage of training or test cases that satisfy a 

rule’s antecedent side.  Accuracy refers to the percentage of training or test cases that are 

covered by the rule and for which the consequent side is true.  In the case of the 

Mushroom example, accuracy is the criterion used to select the best N (i.e., 5) rules, but 

Brute supports several objective functions for evaluating rule quality. We modified Brute 

to use extended Laplace Accuracy, which builds on simple accuracy and Laplace 

accuracy used by other learning systems (Clark & Niblett, 1991; Smyth & Goodman, 

1991). 
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        If   n   is the number of examples in the (test) data set for which the antecedent of the 

rule holds and e is the number of examples for which the consequent and the antecedent 

holds, then simple data accuracy of the rule is 

n

e
AD =  . (1) 

The problem with this measure is that it does not account for data coverage.  A rule that 

predicts a single example correctly scores higher than a rule that covers 999/1000 

examples.  Laplace accuracy, which takes into account coverage, is calculated as  

2

1

+

+
=

n

e
AL . (2) 

This measure assumes a priori that the two possible outcome classifications are equally 

probable.  The Laplace accuracy is not rational for rules below 50% accuracy because it 

assumes an a priori rule accuracy distribution of 50% (Segal, 1997).  This can be 

corrected by using an extended-Laplace accuracy function (Good, 1965),  

kn

Ake
A D

LE
+

×+
= , (3) 

where AD is the proportion of positive examples in the data and k is a small integer, 

commonly set to 2 or the depth of search.  When k is set to the rule induction search 

depth, Segal refers to this accuracy criterion as LaplaceDepth (Segal, 1997).  This 

improved measure is now centered on the frequency of positive examples in the data 

instead of 50%.  All of the clinical datasets in our studies had positive data proportions 

below 50%, typically 10% to 20%.     
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                           3. Bootstrapping Rule Induction and Summary Rule Extraction  

          Our work seeks to reduce the number of rules that need be examined by an analyst, 

to assign variance values to decision boundaries and point estimates, and to measure and 

improve the stability of the rule induction process. To achieve these goals, we repeatedly 

apply rule induction using Brute to different, but overlapping subsets of the available 

data, and abstract rules that occur across multiple rule-induction trials. We use 

bootstrapping as the basis of multiple rule induction trials, though forms of cross 

validation could be adapted to this purpose as well. In Section 5, we discuss alternative 

strategies for achieving several of the goals that we have outlined here. 

3.1 Bootstrapping 

          The bootstrap (Efron, 1979; Efron & Tibshirani, 1993) is a computer-based method 

to estimate the standard error of a parameter.  Bootstrap samples, also called replications, 

are created by uniformly sampling n times with replacement from a dataset of size n.  

Some instances in the original data set will appear zero times while others will appear 

multiple times.  The bootstrap samples are used for training the classifier or rule 

induction algorithm.  For large sample sizes, approximately 36.8 percent of the original 

samples will not be included in the bootstrap sample.  These are reserved for testing.  The 

bootstrap estimate, often referred to as the 0.632-bootstrap estimate, combines the 

accuracies from the testing and training sets as 

∑
=

⋅+⋅=

b

i

train

i

test

i accacc
b

acc
1

632. )368.0632.0(
1

, (4) 

where b is the number of bootstrap samples, acc
train

 is the accuracy of the classifier or 

rule on the training data (i.e., the bootstrap sample) and acc
test

 is the accuracy on the test 

data (i.e., data not included in the bootstrap sample). 
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Bootstrap sampling underlies the machine learning method of bagging classifiers 

(Breiman, 1996), which is an acronym for “bootstrap aggregating”.  Breiman applied this 

technique to CART classification trees and nearest neighbor classifiers.  Kohavi (1995) 

provides another example of applying bootstrap sampling to accuracy estimation for C4.5 

decision trees and Naïve Bayes classifiers.  Breiman conducted trials with between 10 

and 100 bootstrap replications and Kohavi’s experiments varied from 1 to 100 bootstrap 

replications.  Breiman found that most of the improvement in bagging was gained with 

only 10 bootstrap replications.  This is important for our study because rule induction 

using Brute requires significantly more computational time than a greedy method like 

decision tree construction.  

 Nonetheless, bootstrapping rule induction is different than bootstrapping a 

classifier, and while bagging experiments have provided us with some guidance on 

choosing a number of replications, the relevance of bagging and other methods of 

combining classifiers such as boosting (Freund & Schapire, 1996) are of limited 

relevance.  Bootstrapping or bagging a classifier has the goal of increasing accuracy, but 

there is no equivalent overall accuracy criterion for bootstrapping rule induction.
3
  Each 

rule independently classifies only a portion of the data.  A rule found during one 

bootstrap replication might not appear in another replication.  A rule with the same 

attributes might exist in other replications, but the attribute values (or value ranges) 

differ.  Instead of maximizing overall classification accuracy, we seek to find rules whose 

basic form persists across multiple bootstrap replications.  These rules, which we define 

shortly as nearly-identical rules, are combined into summary rules, which reflect 

                                                 
3
 Segal and Etzioni (1994) show how Brute can be extended to learn a classifier, called a decision list, from 

induced rules. Nonetheless, this extension is distinct from Brute, and we mention the decision list work 

here for the interested reader only. 



 10 

variability in rule accuracy and antecedent conditions. Notably, domain experts expect 

variability, and hard rule boundaries seem arbitrary.    It is also useful to know that one 

rule might have lower accuracy but a smaller standard deviation than another rule.   

Bootstrapping is used also by Riddle and Fresnedo (1996).  In their system, 

however, rules were induced once and then bootstrapped 1000-fold with the same data to 

determine the accuracy of the rule.  This is not the same as bootstrapping the induction 

process.  Very recently, Freidman and Popescu (2005) have described a process of 

creating rule ensembles (as opposed to classifier ensembles), by aggregating the 

“important” rules from decision tree classifier(s) through bagging. Evans and Fisher 

(1994, 2002) formed rule ensembles by aggregating the best classifying rules from 

multiple decision trees constructed by semi-automated induction, a collaboration of an 

expert and a learning program. In their industrial application, these best classifying rules 

were combined into a single quality control procedure. 

Bootstrapping rule induction provides a means of evaluating the stability of the 

algorithm, as well as determining rule accuracy and variance.   There has been 

considerable research into evaluating and bounding the stability of learning algorithms 

with respect to accuracy: how do changes in training sample influence differences in the 

accuracies of classifiers constructed from these varying samples (Breiman, 1996; Kearns 

& Ron, 1999; Bousquet & Elisseeff, 2002; Kutin & Niyogi, 2002; Evgeniou, Pontil, & 

Elisseeff, 2004; Elisseeff, Evgeniou, & Pontil , 2005). This work has not been concerned 

with “an algorithm’s hypothesis itself, but the error of the algorithm’s hypothesis” 

(Kearns & Ron, p. 1430). In contrast, Turney (1995) defines stability in terms of the form 

of learned classifiers. In Turney’s view, unstable algorithms discover very different 
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“looking” classifiers, but with roughly the same accuracy over the input data distribution. 

This form of instability can cause experts to be skeptical of the rule induction process. 

Consistent with Turney’s treatment, our goal is to define and evaluate stability in the 

form of discovered rules.  

3.2 Summary Rule Generation 

 Once all bootstrap replications are complete, the best N (e.g., 50) rules, if that 

many are found, are compared to the rules from the remaining replications.  For this 

study, the criterion for determining the best rules was the 0.632 bootstrap estimate 

(Equation 4) of the rule’s extended-Laplace accuracy (Equation 3), and 10 bootstrap 

replications are performed.  “Nearly identical” rules across the replications are identified.  

For a given rule, the rules from other replications must involve the same attributes with 

identical relational operators.  For discrete attributes, the attribute value must be identical.  

For continuous attributes, the attribute values are allowed to vary.  For example, 

IF CPTCode = 29 AND Height < 164 AND HeartRateVariability >= 28.6 

  THEN NauseaGreaterThanMild = yes 

is nearly identical to  

IF CPTCode = 29 AND Height < 158 AND HeartRateVariability >= 25.7 

  THEN NauseaGreaterThanMild = yes 

but is not nearly identical to 

IF CPTCode = 29 AND Height >= 140 AND HeartRateVariability >= 21.3 

  THEN NauseaGreaterThanMild = yes  

and also not nearly identical to  

IF CPTCode <> 27 AND Height < 164 AND HeartRateVariability >= 31.5 

  THEN NauseaGreaterThanMild = yes 
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If nearly identical rules exist across multiple replications, a summary rule is 

created.  The summary rule stores the mean and standard deviation of the summary rule’s 

bootstrapped extended-Laplace accuracy and coverage (i.e., the percentage of cases that 

satisfy the rule’s antecedent), and the number of replications that contained a nearly 

identical rule that support the summary rule. The summary rule also contains basic 

statistics regarding the variability of the continuous attributes included in the rule.   

3.3 Retrieving Summary Rules and Continuous Attribute Range Filtering 

After the summary rules are generated, they are retrieved for review.  A minimum 

level of support is specified to limit the number of summary rules displayed.  The level of 

support is the number of replications that contain a supporting base rule. Depending on 

the dataset and the number of rules found, the analyst may want, for example, to focus on 

rules that occur in all ten replications.  A sample summary rule is shown below.  The 

continuous attribute means are followed by the standard deviations in parentheses.  The 

odds-ratio, which is the ratio of the rule’s bootstrapped extended-Laplace accuracy and 

the prevalence of the outcome for the entire dataset, is also shown in parentheses on the 

following line, along with the bootstrapped extended-Laplace accuracy and coverage.  

The odds-ratio indicates how many times as likely the outcome occurs for the population 

which satisfies the rule antecedent, relative to the data as a whole.   

SummaryRuleID: 7820, SourceRuleID: NVPreo0048005237  

IF CPT = 29 AND HeartRateVariability >= 28.6 (4.5) AND Height <  164 

(6.0)  THEN NauseaGreaterThanMild = yes 

(2.87x as likely) Accuracy: 51.2 (10.9), Coverage: 5.9 (1.1), 10/10  
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 The summary rules that contain the same continuous attribute twice were also 

statistically tested to further filter out inferior rules.  For example, consider a rule that 

specifies a range for the Height variable by stating the upper and lower boundary: 

IF Height >= 159 AND Height < 163  

     AND Phase2Recovery < 27  

THEN NauseaGreaterThanMild = Yes 

In this example, Height is constrained to a fairly narrow range, which is unexpected.  In 

this example, nearly identical rules occur in all 10 replications and the generated 

summary rule is:   

SourceRuleID: NVPreo0048005115, SummaryRuleID: 7851 

IF Height >= 158.6 (1.2) AND Height <  162.9 (0.7)  

    AND Phase2Recovery <  29.4 (6.24)  

THEN NauseaGreaterThanMild = Yes  

(2.89x as likely) Accuracy: 51.7 (8.0), Coverage: 6.6 (2.6), 10/10  

In this case, there may be concern that the distance between the two boundaries is small, 

but the small standard deviations indicate that the summary rule is significant. In this 

case, we would choose to retain the rule, but generally we wish to eliminate rules in 

which the specified range is meaningless due to a large standard deviation relative to the 

distance between the lower and upper boundaries.   

A test for the difference between means (Strait, 1983) is applied.   The null 

hypothesis is that distance between the means of two boundaries is negligible.  A normal 

population distribution and equal variance, using sample variance, is assumed.  Details of 

the test statistic are found in Appendix A. 
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3.4 Similarity Between Rules 

 After rule induction and summary rule generation, the analyst will want to 

compare the rules to determine if rule induction is discovering rules from different 

regions of the problem space or merely minor variations from a smaller portion of 

problem space.  For example, all the rules related to the pain outcome might involve age 

and weight with few additional conjuncts.  For nausea and vomiting, several rules might 

involve sex and weight while another group of rules consistently includes surgery time 

and anesthetic agent as attributes.  The analyst may also compare rules that have different 

outcomes to see if they involve the same attributes.  Prior related research includes the 

clustering of association rules (Lent, Swami, & Widom, 1997), measures of 

interestingness (Silberschatz & Tuzhilin, 1995), and defining rule distance (Gago & 

Bentos, 1998). 

Interpreting rule similarity can be addressed using similarity measures, 

traditionally used in engineering cluster analysis, and multidimensional scaling, 

commonly used in psychology.  Multidimensional scaling (MDS) is used for visualizing 

complex N dimensional problem spaces as 1, 2, or 3 dimensional graphs (Taylor, 1999).  

A classic example is visualizing cities on a map (Forrest & Harris, 1993).  One approach 

would be to have the latitude and longitude coordinates of each city and plot the cities 

upon a two dimensional plane or more precisely on the surface of a sphere.  The MDS 

approach assumes distances between each pair of cities are given, from which cities can 

be positioned in a two-dimensional space that approximates the map obtained by using 

absolute longitude and latitude coordinates.  In general, MDS algorithms take a matrix of 

the distances or similarities between the items as input and attempt to find a configuration 
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in a low dimensional coordinate system that matches the order of the original distances as 

closely as possible (Johnson & Wichern, 1992).   

Rules are different from most multivariate data because each rule is not a discrete 

point in the original multidimensional problem space.  A rule represents a region of the 

problem space, but we are interested in measuring and visualizing similarities/differences 

in the form (i.e., morphological similarities/differences) of discovered rules, not the 

coverage of the rules with respect to the distribution of the data. The basic approach taken 

was inspired by the work of Gower (Gower, 1971; Everitt, 1993).  Gower proposed a 

method for calculating similarity measures for variables of mixed type, both quantitative 

(continuous) and discrete:   

∑

∑

=

=
=

p

k

ijk

p

k

ijkijk

ij

w

sw

s

1

1 . (5) 

Everitt (1993) explains “In this formula,, sijk is the similarity between the ith and jth 

individuals as measured by the kth variable and wijk is typically 1 or 0 depending on 

whether or not the comparison is considered valid for the kth variable.  Weights of zero 

are assigned when variable k is unknown for one or both individuals, or to binary values 

where it is required to exclude negative matches.  For categorical data the component 

similarities, sijk, are 1.0 when the two individuals have the same value and 0.0 otherwise.  

For quantitative variables the similarity is measured by 

kjkikijk Rxxs /1 −−= , (6) 

where xik and xjk are the two individuals’ values for variable k, and Rk is the range of the 

variable k, usually in the set of individuals to be clustered.”  
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           While Gower’s method handles discrete and continuous variables, it must be 

modified because a continuous attribute reference is not a point (e.g., xik in (6) above), 

but a rule’s antecedent defines a range of values.  Thus, rule similarity is calculated using 

the overlap between two rules’ ranges for continuous attributes and shared specification 

of discrete attributes.  The method can be applied to either the initial rules discovered by 

Brute or the summary rules.  For summary rules, the mean values of the continuous-

attribute decision boundaries are used.  Following Turney (1995), for purposes of 

morphological rule comparison, the attributes are assumed to be independent and 

uniformly distributed.  

          The general equations developed by Gower will be used to calculate the similarity 

measure but the similarity for each attribute, sijk, can vary from –1 to 1 (in contrast to 

[0,1]).  The weights, defined by Gower’s method, are set to 1 when the attribute is to be 

included in the similarity calculation.  A sijk  is –1 if the respective ranges in two rules are 

maximally distant (given the observed range over all data of the attribute) and sijk is 1 if 

the ranges are identical.  

        For two rules xi and xj, let us examine one continuous attribute, k.   

Let xikmin be the minimum value of k specified by the first rule.   

Let xjkmin be the minimum value of k specified by the second rule.   

Let xikmax be the maximum value of k specified by the first rule.   

Let xjkmax be the maximum value of k specified by the second rule.   

Rik = xikmax  – xikmin is the range of k for the first rule    

Rjk = xjkmax  – xjkmin is the range of k for the second rule   
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Rk is the same as in Gower’s method, the range of k across all exemplars   

Let xjkmax > xikmax so we can refer to the xj rule as having a higher upper boundary 

for variable k when compared to xi.   

Using these definitions, continuous attribute similarity falls into three categories: 

1.  Dissimilar rules, with no overlap,  xikmax < xjkmin  

jkikk

jkik

ijk
RRR

xx
s

−−

−
=

minmax
. (7) 

This will result in a negative number, which approaches –1 when the rules are at the 

opposite ends of the Rk.  This measures the distance between the two rules divided by the 

maximal possible distance between the rules.  For the example shown in Figure 1, the 

similarity would be 

35.0
)130150()7090()45200(

13090
−=

−−−−−

−
=ijks . (8) 

2.  Similar rules, with overlap,  xikmax > xjkmin 

2/)(
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jkik

jkik

ijk
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s

+

−
= . (9) 

This will result in a positive number that will equal 1 when the rules cover the same 

range of k.  For the example shown in Figure 2, the similarity would be  

25.0
2/))100120()85105((

100105
=

−+−

−
=ijks . (10) 
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3.  Implicitly similar rules 

For cases where one rule does not specify a value for the attribute, the attribute range for 

the unspecified rule is assumed to take on the entire range.  Therefore, it is viewed as 

overlap between similar rules and the following equation is used 

2/)( kik

ik
ijk

RR

R
s

+
= , (11) 

where the attribute value is specified for rule i but not rule j.  If only the lower rule, 

weight between 70 and 90 kilograms, in Figure 1 was specified the similarity would be  

23.0
2/))45200()7090((

)7090(
=

−+−

−
=ijks . (12) 

 

         

 

 

 

Figure 1.  Two rules with no overlap 
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Figure 2.  Two overlapping rules  

 

 Maximally dissimilar ranges with similarity of –1 are at the extreme opposite ends of the 

global range. Two rules which have identical range are maximally similar with a 

similarity of +1.   

          Similarity is also defined when one rule specifies an attribute (e.g., age) that the 

other rule does not reference.  Consider the following rules and assume age ranges from 

10 to 93 years: 

A.  Weight < 70 THEN NauseaVomit = Significant 

B.  Weight < 70 AND 10 < AGE < 15 THEN NauseaVomit = Significant 

C.  Weight < 70 AND 10 < AGE < 50 THEN NauseaVomit = Significant 

The similarity between A and C is greater than the similarity between A and B.  This is 

because there is no restriction on age in rule A. Therefore, rule C’s age range from 10 to 

50 is closer to rule A’s implicit range from 10 to 93, than rule B’s range from 10 to 15.   

       Appendix B details the rules of determining similarity of discrete attributes. 
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3.5 Multidimensional Scaling (MDS) 

Similarity measures are calculated between the summary rules generated during a 

rule induction session.   Summary rules satisfying the minimum support criterion (see 

Section 3.3) are retrieved into an array and a matrix of similarity values is generated.  

This similarity matrix is used as input for multidimensional scaling.   

Multidimensional scaling allows the analyst to visualize rules’ similarity for a rule 

induction session (Borg & Groenen, 1997).  One can see if the rules congregate in a few 

clusters or they are more uniformly distributed.  Multidimensional scaling of the 

summary rule similarity matrices is accomplished with SPSS version 10.0.  The 

PROXSCAL Version 1.0 procedure, developed at Leiden University by de Leeuw, 

Heiser, and Meulman (Busing, 1999), is used.  Multidimensional scaling is an iterative 

process, and we used Torgerson scaling (Torgerson, 1958) for the initial configuration, 

and constrained the solution to two dimensions.   

 

                                        4. Experimental Studies 

       Our contention is that the refined knowledge provided by stable summary rules is 

more meaningful to analysts and clinicians than rules generated from a single induction 

session.  This section describes the reduction in rule set size achieved through 

bootstrapping, and makes an initial examination of rule set stability. We begin by 

describing the data sets on which experiments will be performed. 

4.1 Data Sets 

 We applied bootstrapped rule induction to data from  the Vanderbilt Perioperative 

Information Management System (Higgins, et al, 1997), which is representative of data 
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(i.e., similar attributes) found in another large perioperative archive (Bothner, Georgieff, 

& Schwilk, 2000). The outcomes were high intraoperative heart rate variability (533 out 

of 3655 instances; 14.6%), postoperative pain (198 with no pain and 231 with severe pain 

out of 1583 instances; 12.5% and 14.6%, respectively), postoperative nausea and 

vomiting (494 greater than mild and 270 greater than moderate out of 2533 instances; 

19.5% and 10.7%, respectively), and long recovery time (1615 out of 8248 instances; 

19.6%).  These outcomes were chosen because they are clinically meaningful for 

ambulatory patients, are reliably recorded in the perioperative database, and occur with 

moderate frequency. The perioperative attributes are shown in Table 2.   

Hypothyroid data, used by Ross Quinlan and maintained at the University of 

California at Irvine’s data repository (Bay, 1999), are also examined.  The hypothyroid 

dataset was chosen because the combined training and testing sets contained 2642 

instances after instances with missing values are removed and the nature of its attributes 

(a mixture of Boolean and numeric values).  The primary hypothyroid classification (80 

instances) and the compensated hypothyroid classification (136 instances) were merged 

into a single hypothyroid classification (8.2% of the total data) to more closely resemble 

the distribution of the perioperative datasets. Brute was used to induce rules for this 

single outcome of all hypothyroid in our experiments. The Thyroid attributes are shown 

in Table 3. 
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 Table 2.  Perioperative attributes from the Vanderbilt University datasets 

Attribute Name Range Description 

Sex Male, Female  

Age  12 to 93  

OthHyper no, yes preoperative hypertension 

HOMI no, yes history of myocardial infarction  

Diabetes no, yes  

ASAClass  1 to 4 preoperative assessment of 

anesthetic difficulty 

SurgProcRelatedRisk 1 to 3 preoperative assessment of surgical 

difficulty 

Height 137 to 208 cm  

Weight  9 to 171 kg  

BodyHab 1 to 5 measure of obesity 

PreopSysBP 70 to 210 mmHg Preoperative systolic blood pressure 

PreopDiaBP 40 to 116 mmHg Preoperative diastolic blood 

pressure 

Pulse 40 to 154 bpm Preoperative heart rate, beats per 

minute 

PreopO2Sat 72 to 100% Preoperative blood oxygen 

saturation  

PreopECGAssess abnormal, none, 

normal 

Preoperative ECG 

(electrocardiogram) test results 

PreopAnesSevereNV no, yes Preoperative history of severe 

nausea from anesthetic agents 

KLevels 3to3.8, 3.8to4, 4to4.8, 

4.8to5.1, 

5.1to6, over6, na 

Preoperative potassium test results 

PreopBPMedCount 0 to 4 Count of patient’s blood pressure 

medications  

PreopAllergyAnaphylaxis Anaphylaxis, na Preoperative history of allergic 

reaction 

PreopAllergyBronchospasm Bronchospasm, na Preoperative history of allergic 

reaction 

PreopAllergyNausea na, Nausea Preoperative history of allergic 

reaction 

CPT 00,10,11,12,13,15,16, 

17,19,20,21,23,24,25, 

26,27,28,29,30,31,35, 

36,38,40,41,42,43,45, 

46,47,49,50,51,52,53, 

54,55,56,60,61,62,64, 

69,92,na. 

Current Procedural Terminology 

code group for patient’s main 

surgical procedure.  Actual codes 

are five digits.  First 2 digits define 

general region.   

Laproscopic na, no, yes Surgical procedure is laproscopic 
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  Table 3. Thyroid attributes from the UCI Data Repository dataset 

Attribute Name Range 

Outcome hypo, negative 

Age  1 to 94 

Sex M, F 

On_thyroxine:  f, t 

Query_on_throxine f, t 

On_antithyroid_medication  f, t 

sick f, t  

thyroid_surgery f, t 

I131_treatment f, t 

query_hypothyroid f, t 

query_hyperthyroid f, t 

lithium f, t 

goitre f, t 

tumor f, t 

hypopituitary f, t 

psych f, t 

TSH 0.005 to 530 

T31 0 to 11 

TT4 2 to 430 

T4U1 0.25 to 2.12 

FTI1 2 to 395 

referral_source STMW, SVHC, SVHD, SVI, other 

 

4.2 Rule Induction System Configuration 

As previously stated, there is considerable latitude in the configuration of the 

Brute program.   For this study, all data mining was done to a depth of three conjuncts 

and the minimum positive coverage was five percent.  Iterative depth first search was 

used.  The best 900 rules, as measured by extended-Laplace accuracy, were saved.  

Brute’s four standard filters, as described in Section 2, were employed with default 

settings.  

             Ten bootstrap replications were made for each data set. After rule induction, the 

discovered rules were stored in a Microsoft SQL Server 7.0 relational database. Each 
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base rule was associated with a RuleID, and each summary rule was associated with a 

SumRuleID. Appendix C describes the database design. 

 

4.3 Rule Reduction 

 After completing all 10 replications of a data set, the top 50 rules (of the 900 

stored) for each replication were examined, in turn. For each top-50 rule of a replication, 

all 900 rules of each alternate replication were examined for nearly identical rules from 

which a summary rule could be constructed. If one or more nearly identical rules were 

found for a top-50 rule, then a summary rule was generated and stored, along with the 

base rules that support it. Thus, a rule ranked 32 in replication 4, together with a rule 

ranked 431 in replication 2, and rule 128 in replication 6, might all support a single 

summary rule with 3/10 support. Note that each summary rule formed in this way must 

have at least one top-50 rule in support. Reducing summary rule discovery costs was the 

primary motivation for the top-50 restriction. 

By focusing on summary rules, the number of rules that needs to be analyzed is 

reduced significantly.  For each dataset, Table 4 shows the average number of rules 

discovered per bootstrap replication
4
, the number of summary rules

5
, and the number of 

highly supported summary rules (occurring in exactly 8 of 10, exactly 9 of 10, and 

exactly 10 of 10 replications).  Remember that Brute was configured to find up to 900 

statistically significant rules.  This limit was reached for the long recovery data set.  On 

average, focusing on the summary rules reduces the number of rules to be analyzed by a 

                                                 
4
 Column 3 of Table 4 gives the total number of rules discovered without regard to the possibility of exact 

duplicates, which are unlikely, but possible. The average number of base rules per replication is given in 

parentheses. 
5
 Column 4 of Table 4 lists all summary rules generated from base rules found in 2-10 replications. 
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factor of 4 and evaluating only fully supported rules (10/10 replications) reduces the 

number of rules by a factor of 20. 

 

Table 4.  Number of induced rules and the number of summary rules 

Data Set Sample 

Size 

Average # Rules 

found per 

Replication. 

# 

Summary 

Rules 

# 8/10 

Summary 

Rules 

# 9/10 

Summary 

Rules 

# 10/10 

Summary 

Rules 

hypothyroid  2642 290 124 9 17 33 

heart rate 

variability  

3655 607 129 14 17 16 

nausea over mild  2533 546 166 18 22 17 

nausea over 

moderate  

2533 617 169 19 13 16 

severe pain  1583 646 169 14 19 15 

no pain  1583 537 166 17 20 15 

long recovery 8248 900 152 11 11 56 

 

           Table 5 shows the summary rule file for the high heart rate 

variability rules that persisted across all ten bootstrap replications.  It is provided to 

give an idea of the kinds of rules that were found.  All the rules include low preoperative 

pulse as an attribute.  Most of the rules share another common attribute such as age, 

weight, or blood pressure.   

Table 5.  Summary Rules for high heart rate variability 

 
 SourceRuleID: HRHigh0009001014, SummaryRuleID: 1445 

Height <  177.7 (2.869) AND Age <  47.1 (10.999) AND Pulse <  58.9 (3.9)   

THEN HRVarOver30 = yes 

(4.398x as likely) Accuracy: 64.572 (4.3879), Coverage: 4.3287 (1.0141), 10/10 

 

SourceRuleID: HRHigh0009001011, SummaryRuleID: 1450 

Weight <  70 (3.756) AND Age <  50.6 (11.52) AND Pulse <  61.4 (4.115)   

THEN HRVarOver30 = yes 

(4.081x as likely) Accuracy: 59.926 (7.6929), Coverage: 3.8528 (1.0394), 10/10 
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Table 5 continued 

SourceRuleID: HRHigh0009001010, SummaryRuleID: 1443 

PreopSysBP <  115.5 (6.916) AND Age <  46.3 (9.719) AND Pulse <  61 (4.853)  

THEN HRVarOver30 = yes 

(4.066x as likely) Accuracy: 59.707 (7.5339), Coverage: 4.9437 (1.2526), 10/10 

 

SourceRuleID: HRHigh0009001022, SummaryRuleID: 1462 

Height <  176.3 (2.214) AND PreopSysBP <  117.7 (9.742) AND Pulse <  58.9 

(4.306)  THEN HRVarOver30 = yes 

(4.004x as likely) Accuracy: 58.790 (8.1828), Coverage: 4.0274 (0.4675), 10/10 

 

SourceRuleID: HRHigh0009001003, SummaryRuleID: 1449 

Age <  51.7 (8.994) AND Pulse <  60.6 (1.713) AND PreopDiaBP <  70.8 (1.932)  

THEN HRVarOver30 = yes 

(3.888x as likely) Accuracy: 57.086 (8.9951), Coverage: 4.9846 (1.4420), 10/10  

 

SourceRuleID: HRHigh0009001017, SummaryRuleID: 1453 

Pulse <  60.4 (5.254) AND Weight <  73.4 (4.926) AND PreopO2Sat >= 97.2 (0.789)  

THEN HRVarOver30 = yes 

(3.770x as likely) Accuracy: 55.354 (8.2066), Coverage: 4.63 (0.8047), 10/10  

 

SourceRuleID: HRHigh0009001052, SummaryRuleID: 1471 

IF Sex = Female AND Age <  45.2 (9.727) AND Pulse <  63.5 (3.629)   

THEN HRVarOver30 = yes 

(3.531x as likely) Accuracy: 51.841 (7.6053), Coverage: 4.5077 (1.5166), 10/10  

 

SourceRuleID: HRHigh0009001015, SummaryRuleID: 1459 

Weight <  73.75 (7.878) AND PreopSysBP <  115.8 (10.141) AND Pulse <  62.9 

(4.067)  THEN HRVarOver30 = yes 

(3.373x as likely) Accuracy: 49.530 (7.6227), Coverage: 4.2196 (1.3793), 10/10  

 

SourceRuleID: HRHigh0009001008, SummaryRuleID: 1458 

Age <  48 (11.215) AND Pulse <  63.8 (3.327) AND PreopO2Sat <  97.6 (0.516)  

THEN HRVarOver30 = yes 

(3.361x as likely) Accuracy: 49.356 (3.5509), Coverage: 4.0493 (0.9021), 10/10  

 

SourceRuleID: HRHigh0009001083, SummaryRuleID: 1473 

IF PreopECGAssess = none AND Weight <  68.65 (5.457) AND Pulse <  64.9 (5.507)  

THEN HRVarOver30 = yes 

(3.354x as likely) Accuracy: 49.246 (6.3210), Coverage: 5.4851 (1.6223), 10/10  
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Table 5 continued 

SourceRuleID: HRHigh0009001004, SummaryRuleID: 1452 

Age <  52.5 (9.384) AND Pulse <  67.8 (6.106) AND SurgProcRelatedRisk >= 2 (0)  

THEN HRVarOver30 = yes 

(3.039x as likely) Accuracy: 44.623 (5.0952), Coverage: 4.7620 (1.4132), 10/10  

 

SourceRuleID: HRHigh0009001041, SummaryRuleID: 1489 

Height >= 165.9 (2.601) AND Weight <  64.8 (4.917) AND Pulse <  67.1 (4.818)  

THEN HRVarOver30 = yes 

(2.976x as likely) Accuracy: 43.691 (4.3287), Coverage: 4.184 (0.7397), 10/10  

 

SourceRuleID: HRHigh0009001036, SummaryRuleID: 1465 

Weight <  68.1 (7.82) AND PreopDiaBP <  67.9 (2.846) AND Pulse <  67.3 (3.683)  

THEN HRVarOver30 = yes 

(2.700x as likely) Accuracy: 39.644 (5.5937), Coverage: 5.1311 (4.5090), 10/10  

 

SourceRuleID: HRHigh0009001068, SummaryRuleID: 1476 

Age <  41.3 (6.413) AND Weight >= 79.9 (12.476) AND Pulse <  66.8 (4.826)  THEN 

HRVarOver30 = yes 

(2.493x as likely) Accuracy: 36.603 (7.2994), Coverage: 5.0636 (2.9221), 10/10  

 

SourceRuleID: HRHigh0009001198, SummaryRuleID: 1480 

Age >= 41.3 (11.557) AND PreopSysBP <  125.7 (9.081) AND Pulse <  66.7 (9.105)  

THEN HRVarOver30 = yes 

(2.013x as likely) Accuracy: 29.558 (8.2908), Coverage: 7.6374 (3.0432), 10/10  

 

SourceRuleID: HRHigh0009001209, SummaryRuleID: 1482 

Weight >= 67.8 (7.627) AND BodyHab <  3.5 (0.913) AND Pulse <  65.7 (2.312)  

THEN HRVarOver30 = yes 

(1.720x as likely) Accuracy: 25.264 (3.6839), Coverage: 8.7442 (3.0675), 10/10 

4.4 Multidimensional Scaling 

Figure 5 shows the multidimensional scaling for the high heart rate variability summary 

rules shown in Table 5.  Each rule in the space is labeled with the last three digits of the 

SourceRuleID.
6
  Since all rules include pulse as a conjunct, rules that share two attributes 

are clustered together in the space.  Rules 003, 004, 008, and 014 all involve low age.  

                                                 
6
 SourceRuleID is a candidate key for summary rules. It is conceptually synonymous with the primary key 

of SumRuleID. See Appendix C. 
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Rules 011, 015, 017, 036, and 041 all include low weight.  Rules 068 and 209 include 

high weight and are positioned away from the group of rules involving low weight.  Note  

that rules 010 and 068 contradict each other with respect to age and are positioned away 

from each other.  The multidimensional space assists the analyst in identifying clusters of 

similar rules such as the low weight versus high weight groups.  By referring to Table 5, 

one can see the low weight rules have tighter standard deviations for the weight and more 

powerful odds ratios than the rules specifying a high weight range. 

Figure 5.  Multidimensional scaling for high heart rate variability summary rules 
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4.5 Rule Stability Experiments 

 Experiments were conducted to gain insight into the behavior of the summary 

rules as the size of the dataset increases. Our hypothesis is that larger datasets should 

result in more stable rules.  Rule stability should be a function of the number of 

supporting bootstrap replications. Using the methodology above, we would expect that 

given a sufficiently large training set, 50 summary rules would be constructed and all 

would have 10/10 level of support.
7
  

Other statistics also reflect stability.  For instance, the number of rules rejected by 

continuous attribute filtering is a reflection of rule induction stability. As sample sizes 

increase, differences in continuous attribute bounds become significant and fewer bad 

rules are identified by continuous attribute filtering. For each sample size of Table 6, and 

at each level of bootstrap replication support (2 out of 10 to 10 out of  10), we recorded 

the (a) number of good rules, (b) number of bad rules rejected by filtering, and other 

statistics. 

 

 

 

 

 

 

 

                                                 
7
 This assumes that the underlying rule induction system exhibits stability in the limit. 



 30 

Table 6.  Sample sizes for experiments in rule stability (* reflects use of entire dataset) 

 

Data Set Name Sample sizes 

hypothyroid 100, 200, 500, 1000, 2000, 2642* 

no pain 100, 200, 500, 1000, 1583* 

severe  pain  100, 200, 500, 1000, 1583* 

nausea over mild 100, 200, 500, 1000, 2000, 2533* 

nausea over  

moderate 

100, 200, 500, 1000, 2000, 2533* 

 heart rate variability 

long recovery            

100, 200, 500, 1000, 2000, 3655* 

 

100, 200, 500, 1000, 2000, 5000, 8248* 

    

 

  

Figures 6 and 7 show the number of good and bad summary rules (rejected by 

filtering) at all levels of support as a function of sample size for the two largest data sets: 

long recovery and heart rate variability.  Sample size is displayed on a 

logarithmic scale.  As the sample size increases, the number of filtered rules decreases 

and the number of good rules stabilizes.  There is an initial increase in the number of 

summary rules (both good and bad) as sample size increases, as a greater variety in the 

data set is introduced. With sufficient data, however, the number of summary rules 

decrease, good rules leveling out, and the number of bad rules approaching zero. The 

other domains exhibit similar peaking behavior, though training set size is not large 

enough to see a final tapering off of bad rules. 
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Figure 6:  Rules discovered versus sample size for long recovery data set  

 

Figure 7.  Rules discovered versus sample size for heart rate data set 
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5. Discussion 

While the number of rules found is often a good metric for comparing the 

performance of different machine learning algorithms (Riddle, et al, 1994), creating 

hundreds or thousands of rules is unacceptable for a human analyst.  Ordering summary 

rules by their level of supporting bootstrap replications combined with multidimensional 

scaling visualization of rule clusters provides a path for analysis.  The analyst may start 

by looking at clusters of rules in the MDS graph of the summary rules that occurred in all 

ten replications or the rules with the highest accuracy or lowest variance.  Once that 

knowledge is gleaned, attention can be shifted to summary rules with nine supporting 

replications, lower accuracy, or greater variance.  Since the analyst is concerned with 

multiple risks, future work may use similarity measurement and multidimensional scaling 

to look for commonality between rules with different outcomes.  Rules with pain as an 

outcome can be combined in a multidimensional space with long recovery time rules.  A 

cluster that is composed of rules with dissimilar outcomes might suggest certain events 

are correlated for a specific subpopulation.  

 The disadvantage of the summary rule approach is increased computation time.  

All work was accomplished with identical Intel Pentium III 500 MHz computers with 

256MB.  One computer contained the database and carried the computational burden of 

running stored procedures, storing, and retrieving data.  The other computer acted as an 

analysis workstation by executing the Brute algorithm and other client applications.  Rule 

induction at a depth of three and rule storage for a single bootstrap replication took 

between ten seconds and three hours depending of the dataset.   Preliminary 

experimentation with some datasets took over twelve hours to mine to a depth of four.  
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Since the process is repeated for ten bootstrap replications and experiments were 

conducted with multiple datasets, it was decided to limit depth of search to three.  

Calculating and retrieving summary rules took between one minute and two hours.  

Calculating the similarity matrices took between two and six seconds per rule 

comparison.  For example, a matrix of seventy-seven rules took more than five hours.  A 

matrix of forty-one rules took ninety minutes.  From a practical standpoint, large matrices 

do not lend themselves to visual analysis so most MDS plots will be likely accomplished 

for matrices with fewer than fifty rules.  Nevertheless it may be more efficient to 

implement the similarity calculation stored procedures outside the database and look at 

methods that do not require a complete matrix.  SPSS typically took less than thirty 

seconds to compute and display the multidimensional scaling graph for the corresponding 

matrix.   

            Despite the computational cost of our approach, it is of practical significance in 

many domains. We limited rule depth to three for reasons of cost, but nonetheless, 

medical literature often focuses on statistical tests of single attributes (e.g., is a drug 

efficacious or not for a given study population, identification of a gene marker for a 

cancer), or logistic regression models, which do not have the precision of induced rules at 

describing subpopulations. Moreover, the attributes used are often the result of nontrivial 

lab tests, histories (e.g., history of nausea), and assessments (e.g., surgical risk), which 

take into account a variety of more primitive factors, are opaque to the rule induction 

process, and are standard medical practice. Thus, a rule-depth of three can be quite 

informative, and even with a rule-depth of three, rule discovery is beyond manual 

capabilities. 
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       Generally, when compared to (a) the cost of collecting data, (b) the cost of wading 

through and cleaning large data stores, (c) the cost of expert analysis of large numbers of 

rules, (d) the lesser quality of results obtained by greedy algorithms, and (e) the cost of 

dealing with operative complications that rule induction may anticipate and mitigate, 

even a method that requires many hours or even days, can be highly cost effective in a 

medical setting. Importantly, scaleup is relative, and in the medical setting even an 

“expensive’ algorithm may scale well, though in a real-time setting, it may not. This is 

not to say that efficiency enhancements should not be exploited where possible, and we 

discuss some alternative approaches that are undoubtedly more efficient than our 

bootstrapping approach shortly. 

 The experiments involving rule stability were observational because induced rule 

sets are complex when compared to a machine learning technique that results in a single 

classifier.  The development of a theoretical foundation for induced rule stability and 

behavior is a worthy goal for future research.  While the results are not definitive, we 

suggest the following observations are worth attention.  (1) The reduction in filtered or 

bad rules seems an indication of stability.  (2) Rule induction stability is reflected in an 

increased number of highly supported rules.  (3) The observations that may be related to 

stability are also a reflection of the data.  Stability is not achieved at the same rate or to 

the same degree for all data sets.  (4) Finding stable rules requires a considerable sample 

size.  It is questionable if rule induction is applicable to data sets with fewer than 1000 

records.  Our experiments would have benefited from the inclusion of larger datasets but 

the performance of Brute on data containing over 100,000 records has not been explored.  

Future research may find that moderately sized samples, perhaps between 1000 and 
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50,000 records, are sufficient for inducing stable rules.  A method that characterizes data 

stability would allow the analyst to use a subset instead of all the data, thereby reducing 

computation time.  While the underlying assumptions are different, the overall approach 

is the same as determining sample size for a desired power when conducting analysis of 

variance (Neter, Wasserman, & Kutner, 1990).  

       Using summary rule generation from multiple bootstrap trials for determining 

decision boundary and accuracy variance can be viewed as a rapid prototype that allowed 

us to adapt an off-the-shelf rule induction engine to the task of learning an extended and 

stable form of rule. Future work might develop more efficient methods for determining 

these variances within a single application of the rule induction engine. Such an engine 

would search the space of rules that have much the same form as summary rules, with 

variances attached to continuous attribute antecedents and accuracy point estimates. For 

example, attribute thresholds of a rule could be perturbed in small ways and checked 

against the data to arrive at such “summary” rules.
8
 In contrast to this “model-driven” 

approach (i.e., where a rule is evaluated against data), Brute itself could be modified to 

perform much this same functionality in a more data-driven fashion. Brute uncovers 

many rules of the same form, which we chose to prune (see Section 2), but these rules of 

like form could be retained and Brute modified to combine them into “summary” rules 

within a single replication (rather than across replications).  

6. Conclusion 

Rule induction is well suited for problem domains with a multitude of risks and 

events.  Conjunctive rules are easy to understand but the absolute boundaries of the rules, 

                                                 
8
 This model-driven approach was suggested by an anonymous reviewer. 
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algorithm instability with respect to these boundaries, and the sheer number of rules 

invite skepticism from domain experts.  Summary rules display the variability in conjunct 

boundaries expected by the domain expert and reduce the number of rules which must be 

analyzed.  Highly supported, stable summary rules give greater confidence that this 

knowledge is not just an artificial, over-fitted construct of the machine learning 

algorithm.  Multidimensional scaling is a valuable tool for evaluating sets of induced 

rules but is more subjective.  Future research should focus on advancing understanding of 

induced rule stability in larger datasets. 
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Appendix A 

The test statistic used to filter summary rules (Section 3.3) is  
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X1 is the mean for the upper boundary and X2 is the mean for the lower boundary, d is the 

minimum acceptable distance between the two boundaries.  S1 and S2 are their standard 

deviations.  The number of instances is the same for both boundaries, n1 = n2 so this 

equation reduces to  
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Since this calculation is applied to all summary rules with two conjuncts (upper and 

lower bounds) of the same attribute, some assumptions are made to reduce the 

comparison of the test statistic to a constant value so it could be included in a stored 

procedure.  Distance was set to 1 and it was assumed that analysts would be interested in 

summary rules with at least 7 supporting rules.  The test statistic must exceed 2.18 in 

order to reject the null hypothesis for  n = 7 and for α = 0.05 (|t| > tα/2,2n-2).  If the test 

statistic was less than 2.18, the summary rule was not retrieved for analysis.  In the 

example summary rule of Section 3.3, the test statistic is 7.52 so the null hypothesis is 

rejected and the summary rule is retained.  An example of a summary rule that is rejected 

is: 

IF Height < 165.5 (9.264) AND HeartRateVariability >= 31.2 (9.4) AND 

HeartRateVariability < 35.0 (10.8) THEN NauseaGreaterThanMild = 

significantNV 

(2.08x as likely) Accuracy: 37.2 (9.5), Coverage: 4.1 (1.1), 10/10  

The test statistic for this summary rule is 0.62 so the null hypothesis is accepted and the 

rule is not displayed for analysis.   

Appendix B   

Similarity Calculation for Discrete Attributes 

 Discrete attribute similarity does not involve ranges and overlap but instead 

focuses on the number of discrete attribute values in common between both rules.  In the 

continuous attribute similarity measure, the numerator was the overlap or distance 

between the ranges of each rule and the denominator contained the ranges of each rule 

individually.  For discrete attributes, the numerator contains the percentage of the 



 38 

attributes shared by both rules.  The denominator contains the average of the attributes 

covered by the two rules individually.  There are seven possible categories for discrete 

rule similarity.  Each category will be followed by an example using the attribute 

anesthetic agent.  The possible anesthetic agents are: Desflurane, Isoflurane, Lidocaine, 

Propofol, Sevoflurane, or Unspecified.   

1.  If only one of the rules specifies an attribute and the operator is “equal to” then 

similarity is  

NN

N
sijk

+
=

+
=

1

2

2/)1/1(

/1
  (15) 

Where N is the number of possible values for the discrete attribute.   

Rule 1: Agent =Desflurane  rule 2:   Similarity: 2/7 

2.  If only one of the rules specifies an attribute and the operator is “not equal to” then the 

similarity is 
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Rule 1: Agent <> Isoflurane  Rule 2: Similarity: 10/11  

This generalizes when the one rule specifies an attribute as “not equal to” multiple 

values.  If there are M “not equal to” expressions for the attribute, then the similarity is  
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Rule 1: Agent <> Isoflurane AND Agent <> Desflurane  Rule 2:  

 Similarity: 4/5  
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3.  If xik = xjk, the attribute values are identical, and the operators for each attribute are the 

same, then sijk = 1.   

Rule 1: Agent = Isoflurane  Rule 2: Agent = Isoflurane  Similarity: 1 

Rule 1: Agent <> Isoflurane  Rule 2: Agent <> Isoflurane Similarity: 1 

4.  If xik = xjk, the attribute values are identical, but the operators for each attribute not 

equal, then sijk = -1.   

Rule 1: Agent = Isoflurane  Rule 2: Agent <> Isoflurane Similarity: -1 

5.  If xik <> xjk, the attribute values are different, but the operators are “equal to”, then sijk 

= -1.   

Rule 1: Agent = Isoflurane  Rule 2: Agent = Desflurane Similarity: -1  

6.  If one of the rules specifies “equal to” an attribute value and the other rule specifies 

“not equal to” a different attribute value (Ex.  Rule 1: Agent = Des and Rule 2:  Agent 

<>Iso) then the similarity is  

N

N

N
N

N
sijk

2

2/)
1

/1(

/1
=

−
+

=   (18) 

Rule 1: Agent = Isoflurane  Rule 2: Agent <> Desflurane Similarity: 1/3 

This is expanded when the “not equal to” operator is used more than once in one of the 

rules.  If specified M times, then the similarity is  

MN

N

MN
N

N
sijk

−+
=

−
+

=
1

2

2/)/1(

/1
 (19) 

Rule 1: Agent = Isoflurane   

Rule 2: Agent <> Desflurane AND Agent <> Sevoflurane Similarity: 2/5 
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Note that (15) is a special case of (19), where M = 0. 

7.  Finally, when both rules specify <> to the same attribute but they specify multiple 

attribute values, the similarity is based on the portion of the ranges shared by the rules 

minus the portion of the ranges which are not shared.   
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Rule 1: Agent <> Isoflurane AND Agent <> Desflurane  

Rule 2: Agent <> Desflurane AND Agent <> Sevoflurane Similarity: 1/4 

This measure results to a minimum score of –2 instead of –1.  A score of -2 occurs when 

all of an attribute’s values appear in a <> expression of one rule, but no value appears in 

<> expressions of both rules (i.e., M1 + M2 = N). Essentially, this measure double counts 

the number of unshared ranges.  Rather than correcting for this exactly, an adequate 

approximation is to divide by 2 when the score is negative, thus yielding -1 as a 

minimum. Note that (17) is a special case of (21), where either M1 or M2 is 0. 

      Once the similarity measures for all continuous and discrete attributes are calculated, 

they are combined using Gower’s method (Equation 5).  The similarity measure 

calculation is implemented as a stored procedure in the KDD database.   

Appendix C 

Choosing to store the induced rules in a database was critical to facilitating this research.  

With the induced knowledge as data, the analyst is free to apply set based techniques, 
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statistical tests, and evaluative methods at any time after induction using standard SQL 

techniques.  It will also be easier to integrate discovered rules into the perioperative 

management system so the clinical decision makers can act on the knowledge.  Clinicians 

can be alerted to risks ahead of time by displaying relevant rules in the perioperative 

management system based upon the current patient’s preoperative and intraoperative 

findings. Figure 8 provides an overview of the rule induction methodology.   

 

 

Figure 8.  Rule Induction Process 

The Figure 9 below shows the entity relationship diagram for storing rules.  The 

CommandLine table stores the information associated with a rule induction session on a 

particular data set.  The data set is identified by the database name and the query name.   
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Executing Brute rule induction on a bootstrap replication of the data set is referred to as a 

ValidationTrial in the KDD database.   

 

Figure 9.  Entity Relationship Diagram for rule storage in the KDD database 

 

        Figure 10 shows the entity-relationship diagram concerned with storing summary 

rules. The SummaryRule table stores the mean and standard deviation of each summary 

rule’s bootstrap Laplace accuracy and coverage, as well as the SumRuleID, which is the 

primary key for this table. The SourceRuleID is a candidate key for the SummaryRule 

table
9
, and effectively points at one of the base rules from which the summary rule was 

generated (via a Foreign Key constraint through the DiscreteOutcome table). Rules from 

other replications from which the summary rule was generated are stored in the 

                                                 
9
 In Section 4.3 on Multidimensional scaling, we actually use the candidate key SourceRuleID in labeling 

the points, instead of RuleID. There is no conceptual importance to this. 
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SummaryRuleSupport table. The SummaryAttribute table is used to store basic statistics 

regarding the variability of the continuous attributes included in the rule. 

 

Figure 10.  Entity Relationship Diagram for summary rule storage in the KDD database 
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